Generalized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection
نویسندگان
چکیده
Generalized linear mixed-effect models are widely used for the analysis of correlated nonGaussian data such as those found in longitudinal studies. In this article, we consider extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method, and our focus is on the efficient computation and the effective smoothing parameter selection. To assist efficient computation, the joint likelihood of the observations and the latent variables of the random effects is used instead of the marginal likelihood of the observations. For the selection of smoothing parameters and correlation parameters, direct cross-validation techniques are employed; the effectiveness of cross-validation with respect to a few loss functions are evaluated through simulation studies. Real data examples are presented to illustrate potential applications of the methodology. Open-source R code is demonstrated in an appendix.
منابع مشابه
Automatic Generalized Nonparametric Regression via Maximum Likelihood
A relatively recent development in nonparametric regression is the representation of spline-based smoothers as mixed model fits. In particular, generalized nonparametric regression (e.g. smoothingwith a binary response) corresponds to fitting a generalized linear mixedmodel. Automation, or data-driven smoothing parameter selection, can be achieved via (restricted) maximum likelihood estimation ...
متن کاملbshazard: A Flexible Tool for Nonparametric Smoothing of the Hazard Function
The hazard function is a key component in the inferential process in survival analysis and relevant for describing the pattern of failures. However, it is rarely shown in research papers due to the difficulties in nonparametric estimation. We developed the bshazard package to facilitate the computation of a nonparametric estimate of the hazard function, with data-driven smoothing. The method ac...
متن کاملOptimal Smoothing in Nonparametric Mixed-Effect Models
Mixed-effect models are widely used for the analysis of correlated data such as longitudinal data and repeated measures. In this article, we study an approach to the nonparametric estimation of mixed-effect models. We consider models with parametric random effects and flexible fixed effects, and employ the penalized least squares method to estimate the models. The issue to be addressed is the s...
متن کاملSmoothing Parameter Selection Methods for Nonparametric Regression with Spatially Correlated Errors
Nonparametric regression makes it possible to visualize and describe spatial trends without requiring the specification of a parametric model, but appropriate choice of smoothing parameters is important to avoid misinterpreting the nonparametric fits. Because spatial data are often correlated, currently available data-driven smoothing parameter selection methods often fail to provide useful res...
متن کاملAssessing Generalized Linear Mixed Models Using Residual Analysis
A nonparametric smoothing method for assessing the adequacy of generalized linear mixed models (GLMMs) is developed. The proposed method is based on smoothing the residuals over continuous covariates to avoid the partition of continuous covariates on model checking. The global test statistic has a quadratic form and its formulae of expectation as well as variance are derived. The sampling distr...
متن کامل